Code: 20IT3402

II B.Tech - II Semester – Regular / Supplementary Examinations MAY - 2023

COMPUTER ORGANIZATION (INFORMATION TECHNOLOGY)

Duration: 3 hours Max. Marks: 70

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

			BL	СО	Max.				
					Marks				
	UNIT-I								
1	a)	Explain the process of bus construction with	L2	CO1	7 M				
		multiplexers.							
	b)	Discuss different Micro Operations with	L2	CO2	7 M				
		suitable examples.							
OR									
2	a)	Discuss about register transfer, bus and	L2	CO1	7 M				
		memory transfer.							
	b)	The following transfer statements specify a	L2	CO2	7 M				
		memory. Explain the memory operation in							
		each case							
		i) $R2 \leftarrow M[AR]$							
		ii) $M[AR] \leftarrow R3$							
		iii) $R5 \leftarrow M[R5]$							

UNIT-II								
3	a)	Explain about the Instruction Cycle.	L2	CO1	7 M			
	b)	Draw a flowchart for interrupt cycle and	L3	CO2	7 M			
		explain with an example.						
OR								
4	a)	Discuss about various Basic Instruction	L2	CO1	7 M			
		Formats with example.						
	b)	Illustrate the input-output configuration with	L3	CO2	7 M			
		interrupts.						
UNIT-III								
5		Illustrate various Addressing Modes with	L3	CO2	14 M			
		suitable example.						
	OR							
6	a)	Illustrate the Program interrupt with suitable	L3	CO2	7 M			
		example.						
	b)	Interpret an arithmetic statement using three	L3	CO3	7 M			
		and two Addressing Instructions with your						
		own.						
UNIT-IV								
7	a)	Illustrate the Booth Multiplication	L2	CO2	10 M			
		Algorithm with suitable example.						
	b)	Analyze how Cache memory is faster in	L4	CO4	4 M			
		computing comparing with other memories.						
	OR							

8	a)	Explain about Addition Algorithm with	L2	CO3	7 M			
		suitable example.						
	b)	Explain about Auxiliary memory and Main	L4	CO4	7 M			
		Memory .						
UNIT-V								
9	a)	Explain asynchronous data transfer with	L4	CO4	7 M			
		Handshaking method .						
	b)	Explain in detail about the Pros and Cons of	L4	CO4	7 M			
		Parallel Processing.						
OR								
10	a)	Explain in detail about Direct Memory	L4	CO4	7 M			
		Access with neat Sketch.						
	b)	What is pipelining? Explain about	L4	CO4	7 M			
		Instruction Pipeline.						